If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-44x+105=0
a = 2; b = -44; c = +105;
Δ = b2-4ac
Δ = -442-4·2·105
Δ = 1096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1096}=\sqrt{4*274}=\sqrt{4}*\sqrt{274}=2\sqrt{274}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{274}}{2*2}=\frac{44-2\sqrt{274}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{274}}{2*2}=\frac{44+2\sqrt{274}}{4} $
| -72=6(n+-20) | | 4r=5/7 | | 6t+3(-10t-3)=75 | | -11+3(b+5=7 | | 7x+8/2=9x+1 | | -11+3(b+50=7 | | 2(x-6)-4=8 | | 8x-8/3=2x-1 | | x^2-21.75x=-15.15 | | 3x^4-8x^3-6x^2+24x=0 | | 4(x+11)=60 | | 10+3y=5y–8 | | 3-2.7•8-x=16.5 | | 3x-4/3=5x+7 | | 5(2x-10=-5+10x | | 5x+2/4-2=31/2 | | 3-2.7x(8-x)=16.5 | | 4/2x-5=3 | | x/8+3/4=1/2 | | a÷6+7=10 | | 10-3x=5x+50 | | -0.6x-0.35x+.25=-70 | | 12-2x=-46 | | 12x-2=-46 | | -2y+5=-10 | | x/5=2x-3/5 | | 8(x-7)+16=8x-40 | | x+8=-2(1+x) | | 2t+5=5t+15 | | 1x-2=5 | | -5y=24 | | (-3x)-39=-105 |